Visualization
Summary
Visualization of
- Data
- Model
- Training of a model
- Predictions of a model
Content
Visualizing Data
import matplotlib.pyplot as plt
X = tf.range(-100, 100, 3)
y = X + 10
len70p = int(len(X) / 100 * 80)
X_train = X[:len70p]
y_train = y[:len70p]
X_test = X[len70p:]
y_test = y[len70p:]
plt.scatter(X_train, y_train, c="b", label="training data")
plt.scatter(X_test, y_test, c="r", label="testing data")
plt.legend()
![[Pasted image 20231020220634.png]]
Visualizing Model
Method !::
model = tf.keras.Sequential([
tf.keras.layers.Input(1),
tf.keras.layers.Dense(100),
tf.keras.layers.Dense(100),
tf.keras.layers.Dense(1)
])
model.summary()
"""
Model: "sequential"
_________________________________________________________________
Layer (type) Output Shape Param #
=================================================================
dense (Dense) (None, 100) 200
dense_1 (Dense) (None, 100) 10100
dense_2 (Dense) (None, 1) 101
=================================================================
Total params: 10,401
Trainable params: 10,401
Non-trainable params: 0
_________________________________________________________________
"""
Method 2:
model = tf.keras.Sequential([
tf.keras.layers.Input(1),
tf.keras.layers.Dense(100),
tf.keras.layers.Dense(100),
tf.keras.layers.Dense(1)
])
tf.keras.utils.plot_model(
model=model,
show_shapes=True,
show_dtype=True,
show_trainable=True
)
![[Pasted image 20231020221539.png]]
Visualizing the training of a model
Visualizing the predictions of a model
y_predict = model.predict(X_test)
import matplotlib.pyplot as plt
plt.scatter(X_test, y_test, c="g", label="Expected")
plt.scatter(X_test, y_predict, c="red", label="Actual")
![[Pasted image 20231024182807.png]]