Visualizing the Loss
Summary
- Visualizing the loss curve AKA training curve
Content
model.fit
returns a table of training data
trianing_data = model.fit(X_train, y_train, epochs=100, verbose=0)
trianing_data.history
'''
loss mae
0 13283.436523 13283.436523
1 13038.412109 13038.412109
2 12411.069336 12411.069336
3 11086.649414 11086.649414
4 9185.347656 9185.347656
... ... ...
95 3920.450439 3920.450439
96 3885.978516 3885.978516
97 3856.638672 3856.638672
98 3842.188477 3842.188477
99 3831.773682 3831.773682
100 rows × 2 columns
'''
- To visualize the history in a graph,
model = tf.keras.Sequential([
tf.keras.layers.Input(len(X.columns)),
tf.keras.layers.Dense(50),
tf.keras.layers.Dense(50),
tf.keras.layers.Dense(50),
tf.keras.layers.Dense(1),
])
model.compile(
loss=tf.keras.losses.mae,
optimizer=tf.keras.optimizers.Adam(learning_rate=0.0001),
metrics=[tf.keras.losses.mae]
)
trianing_data = model.fit(X_train, y_train, epochs=100, verbose=0)
pd.DataFrame(trianing_data.history).plot()
plt.ylabel("loss")
plt.xlabel("epochs")
![[Pasted image 20231220235618.png]]